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Abstract

Cytometry of Reaction Rate Constant (CRRC) is a method for studying cell-population het-

erogeneity using time-lapse fluorescence microscopy, which allows one to follow reaction

kinetics in individual cells. The current and only CRRC workflow utilizes a single fluores-

cence image to manually identify cell contours which are then used to determine fluores-

cence intensity of individual cells in the entire time-stack of images. This workflow is only

reliable if cells maintain their positions during the time-lapse measurements. If the cells

move, the original cell contours become unsuitable for evaluating intracellular fluorescence

and the CRRC experiment will be inaccurate. The requirement of invariant cell positions dur-

ing a prolonged imaging is impossible to satisfy for motile cells. Here we report a CRRC

workflow developed to be applicable to motile cells. The new workflow combines fluores-

cence microscopy with transmitted-light microscopy and utilizes a new automated tool for

cell identification and tracking. A transmitted-light image is taken right before every fluores-

cence image to determine cell contours, and cell contours are tracked through the time-

stack of transmitted-light images to account for cell movement. Each unique contour is used

to determine fluorescence intensity of cells in the associated fluorescence image. Next, time

dependencies of the intracellular fluorescence intensities are used to determine each cell’s

rate constant and construct a kinetic histogram “number of cells vs rate constant.” The new

workflow’s robustness to cell movement was confirmed experimentally by conducting a

CRRC study of cross-membrane transport in motile cells. The new workflow makes CRRC

applicable to a wide range of cell types and eliminates the influence of cell motility on the

accuracy of results. Additionally, the workflow could potentially monitor kinetics of varying

biological processes at the single-cell level for sizable cell populations. Although our work-

flow was designed ad hoc for CRRC, this cell-segmentation/cell-tracking strategy also rep-

resents an entry-level, user-friendly option for a variety of biological assays (i.e., migration,

proliferation assays, etc.). Importantly, no prior knowledge of informatics (i.e., training a

model for deep learning) is required.
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1. Introduction

Cancerous tissues are typically very heterogeneous; a single tumor may be composed of several

distinct cell populations, for example, a population of bulk tumor cells and a population of

tumor-initiating cells [1, 2]. Quantitative characteristics of tumor composition, e.g., the size of

the population of tumor-initiating cells, define its carcinogenic features, e.g., resistance to che-

motherapy [3, 4]. Fundamentally, tumor heterogeneity is caused by differences in molecular

reactions between the cells. If a reaction is associated with tumor heterogeneity, it can serve as

a basis for characterizing this heterogeneity [5].

Cytometry is a general approach to study tumor heterogeneity by measuring fluorescence

at the single-cell level. Cytometry of Reaction Rate Constant (CRRC) is a technique that fol-

lows reaction kinetics at the single-cell level and presents the results as a kinetic histogram

“number of cells versus rate constant” [6–11]. Rate constants are the most robust parameters

to characterize chemical reactions, and, accordingly, CRRC can support robust and accurate

characterization of reaction-based cell-population heterogeneity [12]. CRRC may be poten-

tially suitable for the development of reliable cancer biomarkers built upon such heterogeneity

[13].

CRRC is based on time-lapse fluorescence microscopy (Fig 1). Conceptually, a fluorescent

or fluorogenic substrate, which is involved in the reaction of interest, is loaded into the cells.

Fluorescence images of a few hundred cells are taken progressively to monitor the change in

intracellular fluorescence intensity. The images are processed to obtain a kinetic trace “fluores-

cence intensity versus time” for each cell, which is used to determine the rate constant for each

cell. Finally, the data are presented as a kinetic histogram: “number of cells versus rate

constant.”

CRRC is still in its infancy. The current and only CRRC workflow, which was used for prov-

ing CRRC in-principle, includes confocal fluorescence microscopy, and utilizes a single fluo-

rescence image to manually identify cell contours [12]. The cell contours identified from this

single image are used to determine fluorescence intensity of individual cells in every other

image of the large time-stack of images. This rudimentary workflow assumes that each cell

retains its position in the image throughout the entire course of time-lapse measurements

[12]. Such an assumption is impossible to satisfy for motile cells which move significantly dur-

ing the time-lapse measurements. Intracellular fluorescence intensity will become inaccurate

as cells gradually deviate from the cell contours used to determine fluorescence intensity.

Thus, making CRRC robust to cell movement requires a new workflow that identifies cell con-

tours for each fluorescence image and tracks cell contours through the time-stack of images.

Fig 1. Schematic representation of five major steps in the CRRC analysis: 1) a fluorescent substrate involved in the reaction of interest is loaded into

the cells, 2) a time-lapse microscopy experiment is initiated, and sequential images are captured to monitor the change in intracellular fluorescence

intensity, 3) intracellular fluorescence intensity is calculated for each single cell as a function of time, 4) rate constants (k) are determined from reaction

kinetics, i.e., dependencies of fluorescence intensity on time, and 5) a kinetic histogram “number of cells versus rate constant” is plotted to facilitate

accurate analysis of tissue heterogeneity.

https://doi.org/10.1371/journal.pone.0282990.g001

PLOS ONE Cytometry of reaction rate constant (CRRC)

PLOS ONE | https://doi.org/10.1371/journal.pone.0282990 July 3, 2023 2 / 13

to_be_Applicable_to_Motile_Cells/20152820) The

raw data used to generate figures have been

uploaded to the FigShare repository and can be

downloaded using the following link: 10.6084/m9.

figshare.20152820. This link as well as a detailed

key to the data can be found within the Supporting

Information files.

Funding: This work was supported by the Natural

Sciences and Engineering Research Council of

Canada https://www.nserc-crsng.gc.ca/index_eng.

asp (grant STPG-P 521331-2018 to SKN; Sergey

N. Krylov) and the Canadian Institutes of Health

Research https://cihr-irsc.gc.ca/e/193.html (grant

PJT-166079 to CP; Chun Peng). The funders had

no role in study design, data collection and

analysis, decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0282990.g001
https://doi.org/10.1371/journal.pone.0282990
https://figshare.com/articles/media/Workflow_for_Cytometry_of_Reaction_Rate_Constant_CRRC_to_be_Applicable_to_Motile_Cells/20152820
https://www.nserc-crsng.gc.ca/index_eng.asp
https://www.nserc-crsng.gc.ca/index_eng.asp
https://cihr-irsc.gc.ca/e/193.html


Several biological assays, such as migration, proliferation, and cell-cycle assays, are based

on single-cell time-lapse microscopy [14–17]. The reliability of such assays largely depends on

the assay’s ability to properly track each single cell over a stack of images. To serve this pur-

pose, different tracking tools, which rely on automatic single-cell segmentation, have been

developed [16, 17]. It is noteworthy that most of these tracking tools are designed to track fluo-

rescently labelled objects [18]. However, certain applications (e.g., CRRC) require cell tracking

to be performed on a set of non-fluorescence (unstained) images (e.g., bright-field (BF), differ-

ential interference contrast (DIC), and phase-contrast (PC) microscopy). In this case, all tools

designed to track fluorescently labelled objects are expected to fail. To overcome this issue,

advanced tracking tools based on deep learning have been proposed [19–23]. Although they

represent a valid solution for cell tracking of images of unstained cells, they are far from being

user-friendly as they require the user to have a high level of expertise in informatics. Moreover,

training a neural network requires a considerable amount of time. Therefore, both the com-

plexity and time required to train a deep learning network can present an obstacle for many

users. For example, after completing our manuscript, we found a recent publication reporting

the development of an automated cell-tracking tool reminiscent of the one proposed in our

work but requiring a model to be trained [20]. To the best of our knowledge, there is no work-

flow that allows tracking single cells through a stack of unstained images without relying on

the complexity of neural networking. Here we report on the development of such a workflow.

The new CRRC workflow combines two types of optical microscopy: (i) transmitted-light

microscopy for cell-contour identification and cell tracking through the time-stack of images

and (ii) fluorescence microscopy for monitoring substrate conversion into the product during

the time-lapse imaging. Imaging is done in an automated fashion with a transmitted-light

image taken right before every fluorescence image. Time-correlated stacks of transmitted-light

and fluorescence images are processed and analyzed automatically to produce kinetic traces

“fluorescence intensity versus time” which are unaffected by cell displacement.

Workflow development and validation included three major steps. First, we optimized the

use of transmitted-light microscopy for cell-contour identification. Second, we proved that cell

displacement between the adjacent transmitted-light and fluorescence images is negligible

even for highly-motile cells; hence, cell contours determined from transmitted-light images

are applicable to fluorescence images. Finally, we conducted a comparative study of the origi-

nal and new workflows in CRRC of cross-membrane transport in motile cells. The results

clearly demonstrated that limitations of the original CRRC workflow combined with those of

kinetic-analysis algorithms led to a systematic shift of CRRC histograms to the right. These sys-

tematic errors in the original CRRC workflow may wrongly identify subpopulations of cells

with very high rate constants. In contrast, the new CRRC workflow facilitates the determina-

tion of accurate kinetic histograms.

2. Materials and methods

2.1. Cell culture

Ovarian cancer cells TOV-112D were purchased from ATCC and maintained in MCDB 105/

Medium 199 (Sigma-Aldrich, St. Louis, MO, USA, Cat. No. of MCDB 105: M6395, Cat. No. of

Medium 199: M5017) supplemented with 10% fetal bovine serum (Gibco, Grand Island, NY,

USA, Cat. No: 12483–020). Cells were cultured in 60-mm (Sarstedt AG&Co, Numbrecht, Ger-

many, Cat. No: 83.3901) and 35-mm dishes for imaging (Nest Biotechnology Co, Wuxi,

Jiangsu, China, Cat. No: 706001) at 37˚C in a humidified incubator with 5% CO2. Cells were

cultured until they reached approximately 70% confluence.
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2.2. Cell staining

To perform nuclei staining for cell counting in the original workflow, 10 μL of 6.5 mM saponin

(Sigma-Aldrich, St. Louis, MO, USA, Cat. No: 8047152) and 5 μL of 1 mM propidium iodide

(PI, Sigma-Aldrich, St. Louis, MO, USA, Cat. No: 25535164) were added into the Hanks’ Bal-

anced Salt Solution (HBSS) (Gibco, Grand Island, NY, USA, Cat. No:14025092) after comple-

tion of the time-lapse experiment (see CRRC Experimental flow for more details) [24]. After

10 min, cells were imaged with no washing.

2.3. CRRC experimental flow

Cell imaging was conducted on 35-mm plastic-bottom dishes with one exception when a

50-mm glass-bottom dish was used instead (Mattek, Ashland, MA, USA, Cat. No: P50G-1.5-

14-FGRD). Four steps were followed to prepare cells for a CRRC cross-membrane transport

experiment. First, we removed culture medium and washed cells once with 1 mL of PBS. Sec-

ond, we incubated cells for 30 min in 1.2 mL of HBSS containing 1.5 μM fluorescein (Sigma-

Aldrich St. Louis, MO, USA, Cat. No: 518478), the substrate of cross-membrane transport,

and 10 μM glibenclamide (Research Biochemicals International, Natick, MA, USA, Cat. No:

G106), a cross-membrane transport inhibitor. Third, we removed HBSS, and washed cells

three times with 1 mL of PBS each. Fourth, we added 1.2 mL of HBSS and started image acqui-

sition with alternating transmitted-light and fluorescence modes every 1 min for 1 h.

2.4. Image acquisition

In the previous CRRC studies, imaging was performed with confocal laser-scanning fluores-

cence microscopy [12, 25, 26]. In the current work, we used epifluorescence microscopy with a

Leica DMi8 high-throughput cell-imaging system. This imager allows carrying out fully auto-

mated time-lapse image acquisition with alternating transmitted-light and fluorescence

microscopy. BF, DIC, and fluorescence images were acquired with the same apochromatic HC

PL APO 10x/0.45 objective lens. PC images were acquired with a N Plan 10×/0.25 PH1 objec-

tive lens. A FITC filter cube was used for fluorescein and a RHOD cube for PI (a nuclei stain).

All images were captured with a deep-cooled high-resolution sCMOS camera. See Note S1 in

S1 File for details on microscope settings and microscopy protocol.

2.5. Image processing software

We chose Fiji [27], an open-source software, because it can be easily adopted by others and

supports all image processing and image analysis required for a CRRC workflow: (i) merging

transmitted-light and fluorescence images, (ii) cell segmentation, i.e., determination of cell

contours and, thus, identification of cells using the StarDist detector, (iii) cell tracking, includ-

ing creation of tracks and exclusion of cells with incomplete tracks, and (iv) integration of

intracellular fluorescence within the cell contours. Advantageously, a recent version of the Fiji

plugin named TrackMate integrates capabilities for steps (ii) – (iv), which greatly simplifies

image processing and analysis. Software settings and other details can be found in Note S2 in

S1 File.

2.6. Extraction and analysis of kinetic traces

Intracellular fluorescence intensities were extracted from TrackMate and arranged in Micro-

soft Excel to build individual kinetic traces. The kinetic traces were fitted with the exponential

decay (ExpDec1) function in OriginPro1 software from the time of medium exchange at the

beginning of the experiment (initiation of cross-membrane transport). A custom-made fitting
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program has been developed using SciPy open-source Python library [28], and was used to

cross-validate results obtained with OriginPro. The best fits produced rate constants of sub-

strate efflux, kefflux, for individual cells. Negative values of kefflux and all kefflux values with high

uncertainty (relative standard error, RSE> 100%) were removed from further analysis.

2.7. Cell population analysis

Cross-membrane transport of each cell population was characterized by frequency histograms

of kefflux values of individual cells. Histograms were plotted in OriginPro software using the

Custom Binning mode and were characterized by the median (peak position) and skewness

(peak asymmetry) values obtained with the Descriptive Statistics tool. The comparison of dis-

tributions was conducted using the Kolmogorov-Smirnov test, considering α = 0.001 as a crite-

rion of statistical significance.

3. Results and discussion

3.1. Need for transmitted-light microscopy

The first key requirement for ensuring CRRC insensitivity to cell movement is that cell con-

tours be identified in each fluorescence image in the time-stack of images. The very nature of

CRRC prohibits the use of fluorescence from the substrate (product) to identify the cell con-

tours. Since CRRC follows kinetics of fluorescence decrease (or increase), a portion of the fluo-

rescence images in the time-stack always has too weak intracellular fluorescence for cell-

contour identification. As such, we identify the cell contours in each fluorescence image with a

standard multichannel imaging experiment and take an accompanying high-contrast image

right before each fluorescence image of the substrate (product).

The accompanying image can be either a fluorescence one or a transmitted-light one, how-

ever, using an accompanying fluorescence image necessitates cells’ pre-staining with a fluores-

cence probe spectrally different from the substrate (product). Such a probe would impose an

additional chemical stress on the cells and could also interfere with measurements of substrate

(product) fluorescence intensity due to unavoidable spectral overlaps. Therefore, our a priori
preference was an accompanying transmitted-light image. Focal planes in fluorescence and

transmitted-light modes may differ, but modern microscopes provide options of separate

focusing in both fluorescence and transmitted-light modes.

Using transmitted-light images for cell-contour identification imposes a challenge: the con-

trast between cells and background in transmitted-light images is much lower than in fluores-

cence images. All software tools available for cell-contour identification perform best when

cells appear as bright objects on a dark background. Standard transmitted-light images do not

provide the required contrast independently on the imaging mode: DIC, PC, or BF. Yet, there

is a relatively simple solution for this problem since image processing can increase the contrast

of transmitted-light images. Increasing contrast leads to decreasing dynamic range of signal

inside the cell image, but, advantageously, CRRC only needs cell contours from transmitted-

light images in this workflow. Multiple algorithms exist for increasing cell image contrast [29–

32]. We chose a method called thresholding for convenience: thresholding is a standard soft-

ware tool in most advanced microscopes. It was shown that thresholding benefits from having

a transmitted-light image slightly out of focus [31]. Having an image out of focus and subjected

to thresholding raises a question of whether DIC and PC, which have better contrast in raw

images than BF, would retain this advantage. Thus, we compared these three modes for their

utility in cell-contour identification.
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3.2. Preferred mode of transmitted-light microscopy

The three transmitted-light modes were assessed for their performance in correctly identifying

cells compared to manual counting of cells contrasted with PI. PI is a bright fluorescent dye

that stains nuclei in cells with a permeabilized plasma membrane. The nuclei in images of PI-

stained cells are always spaced out by the cytoplasm; therefore, fluorescence images of PI-

stained cells appear as well-separated bright spots in a mono-layer cell culture. Such images

are well suited for manual cell counting (a cumbersome task) and for computer assisted cell

counting [33]. An example of a raw fluorescence image of PI-stained cells is shown in the left-

most panel of Fig 2A. The cells were counted manually in raw fluorescence images, and these

numbers were used as a reference. BF, DIC, and PC images of the same fields of view were

taken immediately after the fluorescence image but with a 30 μm lower focal plane. The cells

appear out of focus, but they are brighter than the background which is beneficial for thresh-

olding (see three rightmost panels in Fig 2A as and example).

All four raw images (fluorescence, BF, DIC, and PC) were processed before being subjected

to automated cell-contour determination. The fluorescence images were simply converted

from RGB to the 16-bit format (see the leftmost panel in Fig 2B as an example). Transmitted-

light images were subjected to live-mode thresholding to obtain high-contrast images (see

three rightmost panels in Fig 2B as an examples). We refer the reader to Note S1 in S1 File for

Fig 2. Comparing three modes of transmitted-light microscopy (BF, DIC, and PC) for the purpose of cell-contour determination using TOV-112D cells

on a plastic-bottom dish. The ability to identify cells correctly was used as a criterion for selecting a suitable transmitted-light microscopy mode. Fluorescence

microscopy (fluo) of PI-stained cells was used as a reference method. Cells were manually counted in raw fluorescence images, and these numbers were used as

a reference. The example image in this figure contains 583 cells. Panel A shows raw (red-framed) images. The fluorescence image was in-focus. The three

transmitted-light images were off focus to facilitate efficient image thresholding for contrast increase. Panel B shows processed (green-framed) images to

facilitate cell-contour identification. The determined cell contours (magenta) are overlayed with the images of the processed cells. The raw fluorescence image

was converted from RGB to the 16-bit format and the background was subtracted using the “rolling ball radius” algorithm (50 pixels). The raw transmitted-

light images were subjected to thresholding and converted to the 16-bit format. The percentages of correctly identified cells were: 96% in the edited

fluorescence image, 88% in the edited BF image, 79% in the edited DIC image, and 43% in the edited PC image.

https://doi.org/10.1371/journal.pone.0282990.g002
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details on the thresholding procedure. The cells in multiple adjacent fields of view were

counted in each of the four processed images with the cell-contour determination software

(StarDist) using a radius range filter (3 to 12 μm) to ensure that we only counted single cells

and excluded cell debris or indistinguishable clustered cells. The cell numbers obtained from

the processed images were compared to the reference numbers obtained via manual counting.

Since it is known a priori that DIC is poorly suited for imaging cells on birefringent materi-

als such as plastics, we performed a comparative study of different transmitted-light modes on

TOV cells that were grown on both plastic (30-mm) and glass-bottom (50-mm) dishes. For the

plastic-bottom dish, we found that the software could identify 98 ± 1%, 83 ± 5%, 68 ± 8%, and

47 ± 4% of cells in fluorescence, BF, DIC, and PC images, respectively (averaging was per-

formed over multiple fields of view). For the glass-bottom dish, we found that the software

could identify 99 ± 1%, 75 ± 7%, 70 ± 5% of cells in fluorescence, BF, and DIC images, respec-

tively. Although the software identified 74 ± 7% single cells in PC images on a glass-bottom

dish, it was clear that almost all identified cells had incorrect contours, and for this reason, PC

on glass-bottom dishes was excluded from any further consideration.

The best cell-counting result was obtained for the fluorescence mode. Such a result was

anticipated as fluorescence gives excellent contrast without contrast enhancement. The results

for BF, DIC, and PC differ from each other beyond experimental error; however, performances

of BF, DIC, and PC depend on hard-to-control experimental parameters. Therefore, instead of

suggesting the blind use of BF (on either a plastic or glass-bottom dish), we recommend that

users of this workflow conduct a similar experiment and determine a preferable mode for

every specific experimental setting. As BF imaging of cells on a plastic-bottom dish was a win-

ner in our competition, we adopted this mode for cell-contour identification and tracking in

our work.

It is important to note that our thresholding method inevitably leads to minor loss of cell

area through background removal. Since we are interested in kinetics of fluorescence intensi-

ties rather than the actual intensity values, the small and consistent loss of cell area should not

influence the results significantly. Nonetheless, we demonstrated experimentally that similar

rate constant distributions were obtained with different recognized cell diameters (areas)

(Note S3 in S1 File). Therefore, it is appropriate to use our thresholding method for processing

transmitted-light images, as the results of CRRC are unaffected by the systematic underestima-

tion of cell areas.

3.3. Assumption of cell immobility during acquisition of two consecutive

images

There is a short but finite time interval of a few seconds between a transmitted-light image and

an accompanying fluorescence image in our new workflow. To evaluate the effects of cell

movement during this short time period on the CRRC results, we performed time-lapse imag-

ing of highly motile cells with high-frequency image acquisition for recording cell tracks (Fig

3). By using the migration tracks, we found that the speed of cell migration did not follow the

normal distribution (Note S3 in S1 File). The peak of the distribution was at approximately

150 μm/h and the interquartile range was 40 μm/h. The fastest cell in the image had a speed of

v>> 400 μm/h. A maximum time gap between acquiring adjacent transmitted-light and fluo-

rescence images is approximately t1 = 3.0 s. The average shift of the fastest cell during this

short time was x = vt1 = 0.33 μm while the cell diameter was d = 13 ± 3 μm. The error that such

a shift in cell position can cause in the integration of intracellular fluorescence intensity over

the area within cell contours is of the order of x/d>> 0.025 (Note S5 in S1 File). Accordingly,

the error in intracellular fluorescence intensity introduced by a finite time interval between the
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transmitted-light image and an accompanying fluorescence image is approximately 2.5%, i.e.,

negligible, even for the fastest moving cells. Therefore, cell positions in these two images can

be assumed to be identical.

We would like to re-emphasize that most advanced microscopes have options of separate

focusing in both transmitted-light and fluorescence imaging modes. To demonstrate that our

workflow can be also used for microscopes without such an option, we conducted a set of

experiments described in Note S6 in S1 File.

3.4. Testing the new CRRC workflow

The original and new workflows are schematically depicted in Fig 4. To compare these two

workflows and assess their sensitivity to cell motility, we performed a CRRC study of cross-

membrane transport in TOV-112D cells. To favour accurate cell tracking in the new workflow,

we set the time gap between adjacent transmitted-light images (t2) to be shorter than the time

required for the fastest cell (with speed v) to cover a distance equal to a typical cell diameter d:

t2 << d/v. Hence, using the values of v = 400 μm/h and d = 13 μm, we set t2 = 1 min (see the

previous section). Then, the two workflows were used to process the time-lapse images in par-

allel and obtain time dependencies (kinetic traces) of fluorescence intensities for individual

cells. Kinetic traces were fitted with a single exponential decay function to find the unimolecu-

lar rate constant kefflux for every single cell. The kinetic traces and the results of the exponential

fitting are archived in a supporting raw-data file: kinetictraces_and_fittingresults.zip.

To examine the sensitivity of both workflows to cell motility, we compared kinetic curves

corresponding to cells with low and high motility. We found that the two workflows expect-

edly produced drastically different kefflux values for high-motility cells due to the inconsistency

between the cell-contour mask and actual cell position (see example in Fig 5A). On the con-

trary, the two workflows returned similar values of kefflux for the low-motility cells (see example

in Fig 5B); this result served as cross-validation for the two workflows. Refer to Note S7 in S1

File for a detailed analysis of the kinetic curve for the highly-motile cells shown in Fig 5A (left-

panel).

Fig 3. Determination of speed for motile (TOV-112D) cells from cell tracks obtained with high-frequency time-lapse BF imaging (1

image per 10 s). The three panels show representative cells with different levels of motility; red lines show respective tracks. Cell contours

(green) show cell positions at the beginning of time-lapse imaging. Average speeds are shown in the panels.

https://doi.org/10.1371/journal.pone.0282990.g003
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An important conclusion from the detailed comparison of fluorescence-decay kinetics of

cells with different motility is that the original workflow tends to overestimate the rate constant

of substrate efflux for high-motility cells. This necessarily leads to the shift of the CRRC histo-

gram produced by the original workflow to the right when compared to the histogram

obtained with the new workflow (Fig 6). Importantly, a similar overestimation of kefflux values

is observed with both OriginPro and a custom-made fitting program. Another important

observation is that the overestimation of rate constant in the original workflow can falsely

identify a subpopulation of cells with high rate constants.

We used a non-parametric statistical test to examine whether there was a significant differ-

ence in the kinetic constant (kefflux) distributions produced by the two workflows. The Kolmo-

gorov-Smirnov test confirmed that the histograms in Fig 6 differed significantly at the 0.001

significance level (D = 0.376, Dα = 0.209, p = 2.82 × 10−11 (see Note S8 in S1 File for details on

our statistical analysis). Note, the two distributions in Fig 6 have different sample sizes; this

occurs since the two workflows differ in their cell-segmentation steps. The Kolmogorov-Smir-

nov test is insensitive to differences in sample size. Therefore, based on these results we can

conclude that the new workflow produces a different and more accurate histogram due to its

insensitivity to cell motility.

4. Conclusions

We reported on the development of a new CRRC workflow which features automated cell

identification and cell tracking in transmitted-light microscopy. Such a workflow can be used

for analysing a wide scope of cell types and can be considered an important move towards

Fig 4. Schematic depictions of the original (left) and new (right) workflows. The last step is identical for both

workflows.

https://doi.org/10.1371/journal.pone.0282990.g004
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making CRRC a practical analytical tool for cytometry studies. Our new workflow will allow

researchers to start CRRC studies of a wide range of intracellular enzymatic reactions in differ-

ent types of cells, including highly motile cells. In recent years, there has been significant prog-

ress in rational design of high-quality fluorogenic substrates for intracellular enzymes.

Specifically, such substrates have been created for enzymes responsible for chemoresistance of

cancer tissues: aldehyde dehydrogenase [34, 35], and cytochrome P450 [36]. We foresee that

combining our new CRRC workflow with these substrates will help discover and validate new

types of predictive biomarkers of chemoresistance [13]. Finally, the cell-segmentation/cell-

tracking tool disclosed here represents an entry-level, user-friendly option that can be used for

a variety of biological assays (i.e., migration, proliferation, etc.) and requires no prior knowl-

edge of informatics (i.e., training a model for deep learning).

Fig 5. Examples of kinetic curves obtained using the original and new workflows. The data from the four different curves was fitted

to the exponential decay function in OriginPro (ExpDec1 function) and a custom-made curve-fitting program. The line-of-best-fit is

shown in red. (A) High-motility cell. The original workflow produces a curve that is not a single exponential decay. Both curve-fitting

programs do not reject the curve giving a kefflux value which is 9-fold greater than the one obtained from the new-workflow curve. (B)

Low-motility cell. The two workflows compute almost identical kinetic curves and kefflux values.

https://doi.org/10.1371/journal.pone.0282990.g005
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Supporting information

S1 File. This is our supporting information file which contains a comprehensive list of

additional data as cited in the main text.

(PDF)
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Fig 6. CRRC final histograms of cross-membrane transport activity in TOV-112D cells. The variation in sample

size is due to differences in cell-segmentation and filtering processes. Both, median and skewness values are shown; the

location of the median values on the graph are indicated with arrows. The histogram obtained from the original

workflow is clearly skewed towards the right. The two distributions were found to be statistically different by the

Kolmogorov-Smirnov test at the 0.001 significance level (p = 2.82 × 10−11).

https://doi.org/10.1371/journal.pone.0282990.g006
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